
12/21/08 6:31 PMObject Computing, Inc. - Java News Brief - January 2009

Page 1 of 14file:///Users/eric/Documents/jnb/jnbJan2009.html

Home | Java News Brief Archive | OCI Educational Services

Solving an Android Threading

Problem

by
Eric M. Burke, Principal Software Engineer

Object Computing, Inc. (OCI)

Introduction

By now, you probably know what Google Android is: an open source operating
system, virtual machine, and SDK for mobile devices. In 2008, T-Mobile released
the first Android phone, the G1. 2009 will bring many different phones from a
variety of carriers.

Android presents an exciting opportunity for programmers. Millions of people will
purchase Android phones in 2009, each including a link to the Android Market.
For a nominal $25 registration fee, any programmer can distribute free Android
applications on the Market. Beginning in January, you'll be able to sell
commercial applications, as well.

If you are new to Android development, start with Google's Notepad Tutorial.
Rather than repeat that material, this article looks at a particular threading
problem in more detail. If you are completely new to Android, you may want to
work through the Notepad tutorial before proceeding.

Threading Rules

Like other GUI toolkits, the Android user interface is single-threaded. To avoid
locking up the GUI, long running operations must run in background threads.
This should sound familiar to Swing programmers, although Android differs in two
notable ways:

Android fails fast when background threads update GUI components. Rather
than silently ignoring this kind of threading bug, Android throws
CalledFromWrongThreadException and immediately terminates the

activity.

http://code.google.com/android/intro/tutorial.html
file:///Users/eric/Documents/jnb/jnbJan2009.html#ocieducationalservices
http://www.ociweb.com/
http://www.ociweb.com/jnb/index.html
http://www.t-mobileg1.com/
http://www.android.com/
http://market.android.com/publish/signup
http://www.android.com/market/

12/21/08 6:31 PMObject Computing, Inc. - Java News Brief - January 2009

Page 2 of 14file:///Users/eric/Documents/jnb/jnbJan2009.html

If a long-running process locks up the UI, Android intervenes and displays
this dialog to the user:

These are welcome improvements because they encourage correct code and help
programmers locate bugs early in the development process. They also prevent
poorly written applications from locking up your entire phone.

The Example

Our sample application looks like this when running in the Android emulator. (The
emulator is included in the free SDK.)

http://code.google.com/android/
http://code.google.com/android/toolbox/responsiveness.html

12/21/08 6:31 PMObject Computing, Inc. - Java News Brief - January 2009

Page 3 of 14file:///Users/eric/Documents/jnb/jnbJan2009.html

When you click Start Background Thread, a few things happen:

1. The button is disabled
2. The status label changes to Running
3. A background thread simulates a long operation

While running, the UI looks like this:

12/21/08 6:31 PMObject Computing, Inc. - Java News Brief - January 2009

Page 4 of 14file:///Users/eric/Documents/jnb/jnbJan2009.html

When the thread completes, the button becomes enabled again and the status
label shows Finished.

Now let's review the source code.

XML Files

Our application contains three XML files, larger applications will have many more.
Although Android utilizes XML during application development, all of these XML
files are compiled into a highly efficient binary form.

AndroidManifest.xml

Every Android application has a manifest in its root folder. The Android Eclipse
plugin generates ours, specifying HomeActivity as the application entry point.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.ociweb.demo"
 android:versionCode="1"
 android:versionName="1.0.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".HomeActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Although this XML is verbose, editing is easy thanks to the graphical editors in
the Android Eclipse plugin.

http://code.google.com/android/devel/bblocks-manifest.html

12/21/08 6:31 PMObject Computing, Inc. - Java News Brief - January 2009

Page 5 of 14file:///Users/eric/Documents/jnb/jnbJan2009.html

strings.xml

The next XML file, strings.xml, defines labels for the entire application. As you
can see, the app_name used in AndroidManifest.xml is defined here in

strings.xml.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Thread Demo</string>
 <string name="start_background_thread">Start Background Thread</string>
 <string name="thread_running">Running</string>
 <string name="thread_finished">Finished</string>
 <string name="thread_status">Thread Status:</string>
 <string name="thread_not_started">Not Started</string>
</resources>

As you add new values to this (and other) XML files, the Eclipse plugin
automatically generates a file named R.java with constants for each string. The

Android SDK also includes command line tools that generate R.java if you don't

use Eclipse.

home.xml

This is the GUI layout file for the home screen shown earlier. Android lets you
define screen layout in XML files or programmatically, although XML is generally
preferred. Like other XML files, layout files are compiled to a more efficient form
before they are ever installed on a phone.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

 <Button android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/start_background_thread_btn"
 android:text="@string/start_background_thread"
 android:layout_gravity="center"/>

 <LinearLayout android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:layout_gravity="center">

 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/thread_status"
 android:textSize="20dp"
 android:paddingRight="5dp"/>

 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/thread_status_label"
 android:text="@string/thread_not_started"
 android:freezesText="true"
 android:textSize="20dp"/>
 </LinearLayout>
</LinearLayout>

Android includes a variety of layout classes, such as LinearLayout,

FrameLayout, RelativeLayout, and more. Like Swing layout managers, these

help your UI adjust to varying screen resolutions with minimum hardcoding.

12/21/08 6:31 PMObject Computing, Inc. - Java News Brief - January 2009

Page 6 of 14file:///Users/eric/Documents/jnb/jnbJan2009.html

Rather than include labels in the layout XML files, we choose to reference values
in strings.xml using this syntax: @string/thread_status.

You may also notice these identifiers: @+id/thread_status_label. The @+id

tells the Android tools to generate a constant in R.java. Your application code
always uses R.java constants to ensure a degree of compile-time safety.

Finally notice the android:freezesText="true" attribute on the status label.

This ensures the label remembers its value when you change screen orientation.

Java Source

R.java

The Android SDK includes a command-line tool named aapt that generates R.java
from the XML files. If you use Eclipse, the plugin instantly updates R.java
whenever you save changes to one of the XML files. This is very useful when you
rename constants because you get compile-time errors until you also update the
code.

/* AUTO-GENERATED FILE. DO NOT MODIFY.
 *
 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand.
 */

package com.ociweb.demo;

public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int icon=0x7f020000;
 }
 public static final class id {
 public static final int start_background_thread_btn=0x7f050000;
 public static final int thread_status_label=0x7f050001;
 }
 public static final class layout {
 public static final int home=0x7f030000;
 }
 public static final class string {
 public static final int app_name=0x7f040000;
 public static final int start_background_thread=0x7f040001;
 public static final int thread_finished=0x7f040003;
 public static final int thread_not_started=0x7f040005;
 public static final int thread_running=0x7f040002;
 public static final int thread_status=0x7f040004;
 }
}

Finally, using integer constants is more efficient than looking up strings from
XML.

HomeActivity.java

Other than the home.xml layout file, most of what we've seen so far is either
generated by command line tools or edited via graphical tools in Eclipse. The
actual home screen, however, is Java source code. In Android, an Activity is
something the user can do. In most cases, Activities are screens in the user
interface.

HomeActivity extends Android's Activity base class. The Android APIs make

12/21/08 6:31 PMObject Computing, Inc. - Java News Brief - January 2009

Page 7 of 14file:///Users/eric/Documents/jnb/jnbJan2009.html

heavy use of the Template Method pattern, in which base classes like Activity

define numerous methods you must override.

public class HomeActivity extends Activity implements OnClickListener {

 private Button mStartButton;
 private TextView mStatusLabel;

 private static final String ENABLED_KEY = "com.ociweb.buttonEnabled";

 // background threads use this Handler to post messages to
 // the main application thread
 private final Handler mHandler = new Handler();

 // post this to the Handler when the background thread completes
 private final Runnable mCompleteRunnable = new Runnable() {
 public void run() {
 onThreadCompleted();
 }
 };

We'll see how to initialize Button and TextView shortly. The ENABLED_KEY let's

us remember if the button is enabled when the user changes the screen
orientation. On the G1 phone, the screen rotates from portrait to landscape mode
when the user slides out the keyboard. This key comes into play in the
onCreate(...) and onSaveInstanceState(...) methods.

The Handler shown above allows background threads to send messages or

Runnable objects back to the main application thread. This is the same concept

as SwingUtilities.invokeLater(Runnable r) and

SwingUtilities.invokeAndWait(Runnable r). When the background thread

completes, it passes the mCompleteRunnable to the Handler for execution on

the main thread.

Next we see the onCreate(...) method.

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.home);

 mStartButton = (Button) findViewById(R.id.start_background_thread_btn);
 mStatusLabel = (TextView) findViewById(R.id.thread_status_label);

 mStartButton.setOnClickListener(this);

 if (savedInstanceState != null) {
 if (savedInstanceState.containsKey(ENABLED_KEY)) {
 mStartButton.setEnabled(savedInstanceState.getBoolean(ENABLED_KEY));
 }
 }
 }

onCreate(...) is one of several Activity Lifecycle methods, called at appropriate

times as Activites come and go. Android always calls onCreate(...), so this is a

good place to locate GUI components and register event listeners. The code also
shows how we use the generated R.java constants.

This is also where we re-establish the enabled flag on mStartButton, using the

ENABLED_KEY defined earlier. Android uses savedInstanceState for short-term

data storage, such as when activities are temporarily paused or when screen
rotation happens.

http://code.google.com/android/reference/android/app/Activity.html#ActivityLifecycle
http://en.wikipedia.org/wiki/Template_method_pattern

12/21/08 6:31 PMObject Computing, Inc. - Java News Brief - January 2009

Page 8 of 14file:///Users/eric/Documents/jnb/jnbJan2009.html

The enabled flag is saved here in the onSaveInstanceState(...) method:

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 outState.putBoolean(ENABLED_KEY, mStartButton.isEnabled());
 }

Next, our Activity implements onClick(View v) from the OnClickListener

interface. This is how we react to button clicks.

 public void onClick(View v) {
 if (v == mStartButton) {

 mStartButton.setEnabled(false);
 mStatusLabel.setText(R.string.thread_running);
 // show a brief popup alert
 Toast.makeText(this, R.string.thread_running, Toast.LENGTH_SHORT).show();

 Thread t = new Thread() {
 public void run() {
 // perform expensive tasks in a background thread
 expensiveOperation();

 // let the UI know the task is complete
 mHandler.post(mCompleteRunnable);
 }
 };
 t.start();
 }
 }

On a phone like the G1, users click buttons by tapping on the screen or hitting a
physical button on the phone. Our code changes the status label, disables the
button, and launches a background thread. Using this thread avoids locking up
the main application thread.

Once the thread completes, it posts the mCompleteRunnable to the mHandler.

Our Runnable, in turn, calls the onThreadComplete() method, shown next.

 /**
 * Call this method on the main application thread once the background thread
 * completes.
 */
 private void onThreadCompleted() {
 mStartButton.setEnabled(true);
 mStatusLabel.setText(R.string.thread_finished);
 Toast.makeText(this, R.string.thread_finished, Toast.LENGTH_SHORT).show();
 }

 /**
 * This method runs in a background thread. In a real app, it would do
 * something useful, such as getting data from a web service.
 */
 private void expensiveOperation() {
 try {
 TimeUnit.SECONDS.sleep(4);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
}

Those calls to Toast.makeText(...) trigger a brief popup alert. When the

thread is complete, we enable the button again and change the status label back

12/21/08 6:31 PMObject Computing, Inc. - Java News Brief - January 2009

Page 9 of 14file:///Users/eric/Documents/jnb/jnbJan2009.html

to "Finished".

The Threading Bug

The example handles threads just like most of the examples shown online, but it
suffers from a critical bug. If you change the screen orientation while the thread
is active, the UI fails to receive notification when the thread completes. Here is
what you see:

At this point the user has to exit and re-start the app, because the button will
never again become enabled.

When the screen orientation changes, Android destroys the existing Activity
instance and creates a completely new Activity as a replacement. This is all part
of the Activity lifecycle mentioned before. This diagram shows what happens:

Although Android creates a new instance of HomeActivity, our background

thread does not stop automatically. Even worse, our thread is an inner class with
an implicit reference back to the HomeActivity instance. If the thread never

stops, this causes a memory leak. But in our case, it means when the thread
completes, it notifies the old HomeActivity instance instead of the new one. If

you rotate the screen while our thread is running, the GUI shows incorrect

12/21/08 6:31 PMObject Computing, Inc. - Java News Brief - January 2009

Page 10 of 14file:///Users/eric/Documents/jnb/jnbJan2009.html

values.

These kinds of state management problems are not limited to screen rotation.
When an incoming phone call arrives, Android pauses the HomeActivity to

display the phone call. The user might also bring up the dialer or navigate to
some other Activity. You need to test all of these scenarios to ensure the

background thread completes successfully.

Fixing the Bug

There are a variety of things we can do to fix this bug. Some options include:

Override Activity.onPause() and stop the thread. When the activity

resumes, simply start another thread. While this would work, it is inefficient.
So long as we started a thread, we may as well try to utilize the data it just
fetched.
Override Activity.onRetainNonConfigurationInstance() and return a

reference to the running Thread. When Android creates the new

HomeActivity instance, you can obtain the thread via

getLastNonConfigurationInstance(). This is only a partial solution

because our inner class thread still has a reference to the old
HomeActivity. We'd need to make a static or top-level Thread class, and

explicitly set a reference to the new HomeActivity instance after the

rotation. This is possible, but tricky to get right.
Use an Android Service along with BroadcastReceiver, but that's a pretty

expensive solution. BroadcastReceiver is more appropriate when sending

messages to other applications, and is overkill when sending messages
within a single Activity.

Our Solution

Let's start by creating a data model that keeps track of the HomeActivity state.

HomeModel.java

/**
 * Data model for the HomeActivity. Fires events when the data
 * fetch thread begins and ends.
 */
public class HomeModel implements Serializable {
 private static final long serialVersionUID = 1L;

 public enum State { NOT_STARTED, RUNNING, FINISHED }

 private State state = State.NOT_STARTED;
 private HomeModelListener homeModelListener;

 public synchronized void setHomeModelListener(HomeModelListener l) {
 homeModelListener = l;
 }

 public void setState(State state) {
 // copy to a local variable inside the synchronized block
 // to avoid synchronization while calling homeModelChanged()

 HomeModelListener hml = null;
 synchronized (this) {
 if (this.state == state) {
 return; // no change
 }
 this.state = state;
 hml = this.homeModelListener;
 }

12/21/08 6:31 PMObject Computing, Inc. - Java News Brief - January 2009

Page 11 of 14file:///Users/eric/Documents/jnb/jnbJan2009.html

 // notify the listener here, not synchronized
 if (hml != null) {
 hml.homeModelChanged(this);
 }
 }

 public synchronized State getState() {
 return state;
 }
}

HomeModelListener.java

The HomeModelListener interface is trivial.

public interface HomeModelListener {
 void homeModelChanged(HomeModel hm);
}

DataFetcherThread.java

Next, we'll break out the thread into a standalone class. This eliminates the
problem with our inner class holding an implicit reference to the enclosing
HomeActivity instance.

public class DataFetcherThread extends Thread {
 private final HomeModel homeModel;

 public DataFetcherThread(HomeModel homeModel) {
 this.homeModel = homeModel;
 }

 public void start() {
 homeModel.setState(HomeModel.State.RUNNING);
 super.start();
 }

 public void run() {
 try {
 TimeUnit.SECONDS.sleep(3);
 } catch (InterruptedException e) {
 } finally {
 homeModel.setState(HomeModel.State.FINISHED);
 }
 }
}

Class Diagram

Here is a diagram that shows how these pieces fit together.

12/21/08 6:31 PMObject Computing, Inc. - Java News Brief - January 2009

Page 12 of 14file:///Users/eric/Documents/jnb/jnbJan2009.html

HomeActivity creates DataFetcherThread, but does not retain a reference

to it.
HomeActivity implements HomeModelListener, updating the button and

label display whenever the data model changes.
The thread is no longer an inner class, so it retains no reference back to
HomeActivity.

Improved Rotation

What happens when the user rotates the screen? When Android destroys the first
HomeActivity instance, the activity saves the HomeModel reference in its saved

instance state. It also detaches itself as a listener. When Android creates the
second HomeActivity, it obtains the saved HomeModel instance from the saved

instance state. Hopefully this diagram clarifies a bit:

HomeActivity, Final Version

Here is HomeActivity.java in its entirety, using all of the changes mentioned
above.

12/21/08 6:31 PMObject Computing, Inc. - Java News Brief - January 2009

Page 13 of 14file:///Users/eric/Documents/jnb/jnbJan2009.html

public class HomeActivity extends Activity implements OnClickListener, HomeModelListener {

 private Button mStartButton;
 private TextView mStatusLabel;

 private static final String ENABLED_KEY = "com.ociweb.buttonEnabled";
 private static final String HOME_MODEL_KEY = "com.ociweb.homeModel";

 // background threads use this Handler to post messages to
 // the main application thread
 private final Handler mHandler = new Handler();

 // this data model knows when a thread is fetching data
 private HomeModel mHomeModel;

 // post this to the Handler when the background thread completes
 private final Runnable mUpdateDisplayRunnable = new Runnable() {
 public void run() {
 updateDisplay();
 }
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.home);

 mStartButton = (Button) findViewById(R.id.start_background_thread_btn);
 mStatusLabel = (TextView) findViewById(R.id.thread_status_label);

 mStartButton.setOnClickListener(this);

 if (savedInstanceState != null) {
 if (savedInstanceState.containsKey(ENABLED_KEY)) {
 mStartButton.setEnabled(savedInstanceState.getBoolean(ENABLED_KEY));
 }
 if (savedInstanceState.containsKey(HOME_MODEL_KEY)) {
 mHomeModel = (HomeModel) savedInstanceState.getSerializable(HOME_MODEL_KEY);
 }
 }
 if (mHomeModel == null) {
 // the first time in, create a new model
 mHomeModel = new HomeModel();
 }
 }

 @Override
 protected void onPause() {
 super.onPause();
 // detach from the model
 mHomeModel.setHomeModelListener(null);
 }

 @Override
 protected void onResume() {
 super.onResume();
 // attach to the model
 mHomeModel.setHomeModelListener(this);

 // synchronize the display, in case the thread completed
 // while this activity was not visible. For example, if
 // a phone call occurred while the thread was running.
 updateDisplay();
 }

 public void homeModelChanged(HomeModel hm) {

12/21/08 6:31 PMObject Computing, Inc. - Java News Brief - January 2009

Page 14 of 14file:///Users/eric/Documents/jnb/jnbJan2009.html

 // this may be called from a background thread, so post
 // to the handler
 mHandler.post(mUpdateDisplayRunnable);
 }

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 outState.putBoolean(ENABLED_KEY, mStartButton.isEnabled());
 outState.putSerializable(HOME_MODEL_KEY, mHomeModel);
 }

 public void onClick(View v) {
 if (v == mStartButton) {
 new DataFetcherThread(mHomeModel).start();
 }
 }

 private void updateDisplay() {
 mStartButton.setEnabled(mHomeModel.getState() != HomeModel.State.RUNNING);

 switch (mHomeModel.getState()) {
 case RUNNING:
 mStatusLabel.setText(R.string.thread_running);
 Toast.makeText(this, R.string.thread_running, Toast.LENGTH_SHORT);
 break;
 case NOT_STARTED:
 mStatusLabel.setText(R.string.thread_not_started);
 break;
 case FINISHED:
 mStatusLabel.setText(R.string.thread_finished);
 Toast.makeText(this, R.string.thread_finished, Toast.LENGTH_SHORT);
 break;
 }
 }
}

Summary

Understanding the Activity Lifecycle is critical to success with Android. Since
mobile devices have limited resources, activities are constantly paused, resumed,
initialized, and destroyed. Your application code has to handle these transitions
with grace, which is probably the most challenging aspect of Android
development.

Recommended Reading

Hello, Android by Ed Burnette is probably the best book for programmers
new to Android.
Android Official Site - http://www.android.com
Android Developer site on Google Code (SDK, documentation, and tutorials)
- http://code.google.com/android/
Android Open Source Project (source code for the OS, SDK, and Dalvik VM)
- http://source.android.com/

http://source.android.com/
http://code.google.com/android/reference/android/app/Activity.html#ActivityLifecycle
http://www.pragprog.com/titles/eband/hello-android
http://www.android.com/
http://code.google.com/android/

